Smoothing piecewise linear activation functions based on mollified square root functions

نویسندگان

چکیده

Activation functions(AFs) are crucial components in neural networks for deep learning. Piecewise linear functions(PLFs) have been widely employed to act as AFs, thanks their computational efficiencies and simplicities. However, PLFs not completely differentiable, potential problems of training. The analytical expressions AFs based on pure can be smoothed via mollified square root function(MSRF) method, inspired by SquarePlus method ReLU approximation. In this paper, we propose a proposition defining maximum or minimum two PLFs, transform the results into function MSRF method. Based MSRF, modify well-known composed three four regularized ones systematically, including ReLU, LReLU, vReLU, Step, Biplolar, BReLU(Bounded ReLU), Htanh(Hard Tanh), Pan(Frying pan function), STF(Soft Thresholding Formulas), HTF(Soft SReLU(S-shaped MReLU(Mexican hat type TSF(Trapezoid-shaped function) functions. Additionally, according equivalences SoftPlus functions, some classic compound such ELU, Swish, Mish, SoftSign Logish DLU expressed also. derivatives versions demonstrate smoothness properties. proposed extended multiple easily, which will investigated deeply future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

Graphing Square Root Functions

Identify the domain and range of each. Then sketch the graph.

متن کامل

Discrete piecewise linear functions

The concept of permutograph is introduced and properties of integral functions on permutographs are established. The central result characterizes the class of integral functions that are representable as lattice polynomials. This result is used to establish lattice polynomial representations of piecewise linear functions on R and continuous selectors on linear orders.

متن کامل

Fitting piecewise linear continuous functions

We consider the problem of fitting a continuous piecewise linear function to a finite set of data points, modeled as a mathematical program with convex objective. We review some fitting problems that can be modeled as convex programs, and then introduce mixed-binary generalizations that allow variability in the regions defining the best-fit function’s domain. We also study the additional constr...

متن کامل

Correlation between Piecewise - Linear Functions ∗

We study the problem of computing correlation between two piecewise-linear bivariate functions defined over a common domain, where the surfaces they define in three dimensions— polyhedral terrains—can be transformed vertically by a linear transformation of the third coordinate (scaling and translation). We present a randomized algorithm that minimizes the maximum vertical distance between the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical foundations of computing

سال: 2023

ISSN: ['2577-8838']

DOI: https://doi.org/10.3934/mfc.2023032